Description
T(n) = n^k,S(n) = T(1) + T(2) + ...... T(n)。给出n和k,求S(n)。
例如k = 2,n = 5,S(n) = 1^2 + 2^2 + 3^2 + 4^2 + 5^2 = 55。
由于结果很大,输出S(n) Mod 1000000007的结果即可。
Input
第1行:一个数T,表示后面用作输入测试的数的数量。(1 <= T <= 5000)
第2 - T + 1行:每行2个数,N, K中间用空格分割。(1 <= N <= 10^18, 1 <= K <= 2000)Output共T行,对应S(n) Mod 1000000007的结果。
Sample Input
35 34 24 1
Sample Output
2253010
分析
求自然数的幂和,有一个基于伯努利数的公式。
于是线性处理出每一项,那么每个case就是线性求解了。
伯努利数怎么计算呢?
首先B0=1,然后有
将Bn提取出来,得到
这样就能递推伯努利数了。
#include#include #include #include #include #include #include #include #include #include #include